Sheldon M. Ross "Stochastic Processes" 2nd Edition 随机过程(第二版)习题
# 4.2对 Markov 链证明,只要 n 1 < ⋯ < n k < n n_1<\cdots<n_k<n n 1 < ⋯ < n k < n , 就有
P ( X n = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X n = j ∣ X n k = i k ) P(X_n=j\mid X_{n_1}=i_1,\cdots,\,X_{n_k}=i_k)=P(X_n=j\mid X_{n_k}=i_k) P ( X n = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X n = j ∣ X n k = i k )
解:
归纳法证之.
① 当 n = n k + 1 n=n_k+1 n = n k + 1 时,由 Markov 性立即得
P ( X n k + 1 = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X n k + 1 = j ∣ X n k = i k ) P(X_{n_k+1}=j\mid X_{n_1}=i_1,\cdots,X_{n_k}=i_k)=P(X_{n_k+1}=j\mid X_{n_k}=i_k) P ( X n k + 1 = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X n k + 1 = j ∣ X n k = i k )
② 假设 n = m > n k + 1 n=m>n_k+1 n = m > n k + 1 时成立 P ( X m = s ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X m = s ∣ X n k = i k ) P(X_m=s\mid X_{n_1}=i_1,\cdots,X_{n_k}=i_k)=P(X_m=s\mid X_{n_k}=i_k) P ( X m = s ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = P ( X m = s ∣ X n k = i k ) . 考虑 n = m + 1 n=m+1 n = m + 1 ,取条件于 X m X_m X m 的取值,由 Markov 性及归纳假设得
P ( X m + 1 = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = ∑ s P ( X m + 1 = j ∣ X m = s , X n 1 = i 1 , ⋯ , X n k = i k ) ⋅ P ( X m = s ∣ X n 1 = i 1 , ⋯ , X n k = i k ) = ∑ s P ( X m + 1 = j ∣ X m = s ) ⋅ P ( X m = s ∣ X n k = i k ) = P ( X m + 1 = j ∣ X n k = i k ) ( Chapman-Kolmogorov ) \begin{aligned} &P(X_{m+1}=j\mid X_{n_1}=i_1,\cdots,X_{n_k}=i_k)\\ =\,&\textstyle\sum_{s} P(X_{m+1}=j\mid X_m=s,X_{n_1}=i_1,\cdots,X_{n_k}=i_k)\cdot P(X_m=s\mid X_{n_1}=i_1,\cdots,X_{n_k}=i_k)\\ =\,&\textstyle\sum_{s} P(X_{m+1}=j\mid X_m=s)\cdot P(X_m=s\mid X_{n_k}=i_k)\\ =\,&P(X_{m+1}=j\mid X_{n_k}=i_k)\quad(\text{Chapman-Kolmogorov}) \end{aligned} = = = P ( X m + 1 = j ∣ X n 1 = i 1 , ⋯ , X n k = i k ) ∑ s P ( X m + 1 = j ∣ X m = s , X n 1 = i 1 , ⋯ , X n k = i k ) ⋅ P ( X m = s ∣ X n 1 = i 1 , ⋯ , X n k = i k ) ∑ s P ( X m + 1 = j ∣ X m = s ) ⋅ P ( X m = s ∣ X n k = i k ) P ( X m + 1 = j ∣ X n k = i k ) ( Chapman-Kolmogorov )
于是原命题成立.
# 4.8X 1 , X 2 , ⋯ X_1,\,X_2,\cdots X 1 , X 2 , ⋯ 独立同分布,P ( X i = j ) = α j ( j ≥ 0 ) P(X_i=j)=\alpha_j\ (j\geq0) P ( X i = j ) = α j ( j ≥ 0 ) ,X 0 = − ∞ X_0=-\infty X 0 = − ∞ . 称 n n n 时刻产生一个记录,若 X n X_n X n 比之前的所有值都大,并称 X n X_n X n 为其记录值。令 R i R_i R i 为第 i i i 个记录值.
证明 { R i } \left\{R_i\right\} { R i } 是 Markov 链,并计算转移概率. 记第 i i i 个记录与第 i + 1 i+1 i + 1 个记录之间的时间为 T i T_i T i . { T i } \left\{T_i\right\} { T i } 是 Markov 链否?{ ( R i , T i ) } \left\{(R_i,\,T_i)\right\} { ( R i , T i ) } 是 Markov 链否?若是则计算转移概率. 令 S n = ∑ 1 n T i S_n=\sum\limits_1^nT_i S n = 1 ∑ n T i , 证明:当 X i X_i X i 都是连续随机变量时 { S n } \left\{S_n\right\} { S n } 是 Markov 链,并计算转移概率. 解:
(1) 用 n k n_{k} n k 表示第 k k k 次记录产生的时刻,则 X n k = R k X_{n_k}=R_k X n k = R k . 于是 R k = r R_k=r R k = r 即等价于 “n k n_k n k 时刻取值为 r r r ,且比上一个记录值要大,且两次记录时刻之间的取值均不比上一个记录值大”. 记第 k k k 次记录与第 k + 1 k+1 k + 1 次记录之间间隔 n k + 1 − n k = t n_{k+1}-n_k=t n k + 1 − n k = t (也即两个记录中间夹 t − 1 t-1 t − 1 个值),则取条件于 t t t :
P ( R k + 1 = r ∣ R k = r 0 ) = ∑ t = 1 ∞ P ( X n k + 1 = r , X n k + 1 > r 0 ; X 1 + n k ≤ r 0 , X 2 + n k ≤ r 0 , ⋯ , X t − 1 + n k ≤ r 0 ) = ∑ t = 1 ∞ P ( X l = r , X l > r 0 ) ⋅ [ P ( X n ≤ r 0 ) ] t − 1 \begin{aligned} P\left(R_{k+1}=r\mid R_k=r_0\right)&= \textstyle\sum\limits_{t=1}^\infty P\left(X_{n_{k+1} }=r,\,X_{n_{k+1} }>r_0\,;\,X_{1+{n_k} }\leq r_0,\,X_{2+{n_k} }\leq r_0,\,\cdots,\,X_{t-1+n_{k} }\leq r_0\right)\\ &= \textstyle\sum\limits_{t=1}^\infty P\left(X_l=r,\,X_{l}>r_0\right)\cdot\big[P\left(X_n\leq r_0\right)\big]^{t-1} \end{aligned} P ( R k + 1 = r ∣ R k = r 0 ) = t = 1 ∑ ∞ P ( X n k + 1 = r , X n k + 1 > r 0 ; X 1 + n k ≤ r 0 , X 2 + n k ≤ r 0 , ⋯ , X t − 1 + n k ≤ r 0 ) = t = 1 ∑ ∞ P ( X l = r , X l > r 0 ) ⋅ [ P ( X n ≤ r 0 ) ] t − 1
当 r ≤ r 0 r\leq r_0 r ≤ r 0 时,显然有 P ( X l = r , X l > r 0 ) = 0 P\left(X_l=r,\,X_l>r_0\right)=0 P ( X l = r , X l > r 0 ) = 0 ; 当 r > r 0 r>r_0 r > r 0 时,原式 = ∑ t = 0 ∞ P ( X l = r ) ⋅ [ P ( X n ≤ r 0 ) ] t = P ( X l = r ) ⋅ 1 1 − P ( X n ≤ r 0 ) = α j ∑ m = r 0 + 1 ∞ α m =\textstyle\sum\limits_{t=0}^\infty P\left(X_l=r\right)\cdot\big[P\left(X_n\leq r_0\right)\big]^{t}=P\left(X_l=r\right)\cdot\dfrac{1}{1-P(X_n\leq r_0)}=\dfrac{\alpha_j}{\sum_{m=r_0+1}^{\infty}\alpha_m} = t = 0 ∑ ∞ P ( X l = r ) ⋅ [ P ( X n ≤ r 0 ) ] t = P ( X l = r ) ⋅ 1 − P ( X n ≤ r 0 ) 1 = ∑ m = r 0 + 1 ∞ α m α j
因此 { R k } \left\{R_k\right\} { R k } 是 Markov 链,转移概率
P ( R k + 1 = r ∣ R k = r 0 ) = { 0 , r ≤ r 0 α r ∑ m = r 0 + 1 ∞ α m , r > r 0 P\left(R_{k+1}=r\mid R_k=r_0\right)=\begin{cases}0&,\,r\leq r_0\\\dfrac{\alpha_r}{\sum_{m=r_0+1}^{\infty}\alpha_m}&,\,r>r_0\end{cases} P ( R k + 1 = r ∣ R k = r 0 ) = ⎩ ⎪ ⎨ ⎪ ⎧ 0 ∑ m = r 0 + 1 ∞ α m α r , r ≤ r 0 , r > r 0
(2) 第 k + 1 k+1 k + 1 次记录至第 k + 2 k+2 k + 2 次记录的时间间隔显然与且只与第 k + 1 k+1 k + 1 次记录的值有关,因此 { T k } \left\{T_k\right\} { T k } 不是 Markov 链。结合 { R k } \left\{R_k\right\} { R k } 的 Markov 性可得
P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 , T k = t 0 ) = P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 ) = P ( R k + 1 = r , T k + 1 = t , T k = t 0 ∣ R k = r 0 ) P ( R k = r 0 ) P ( T k = t 0 ∣ R k = r 0 ) P ( R k = r 0 ) = P ( ( t − 1 ) 个 X ≤ r , X l = r > r 0 , ( t 0 − 1 ) 个 X ≤ r 0 ) P ( ( t 0 − 1 ) 个 X ≤ r 0 ) = P ( ( t − 1 ) 个 X ≤ r , X l = r > r 0 ) \begin{aligned} &\quad\,\,P\left(R_{k+1}=r,\,T_{k+1}=t\mid R_k=r_0,\,T_k=t_0\right)\\ &= P\left(R_{k+1}=r,\,T_{k+1}=t\mid R_k=r_0\right)\\ &= \dfrac{P\left(R_{k+1}=r,\,T_{k+1}=t,\,T_k=t_0\mid R_k=r_0\right)\bcancel{P(R_k=r_0)} }{P\left(T_k=t_0\mid R_k=r_0\right)\bcancel{P(R_k=r_0)} }\\ &= \dfrac{P((t\!-\!1)个X\leq r,\,X_l=r>r_0,\,(t_0\!-\!1)个X\leq r_0)}{P((t_0\!-\!1)个X\leq r_0)}\\ &= P((t\!-\!1)个X\leq r,\,X_l=r>r_0) \end{aligned} P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 , T k = t 0 ) = P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 ) = P ( T k = t 0 ∣ R k = r 0 ) P ( R k = r 0 ) P ( R k + 1 = r , T k + 1 = t , T k = t 0 ∣ R k = r 0 ) P ( R k = r 0 ) = P ( ( t 0 − 1 ) 个 X ≤ r 0 ) P ( ( t − 1 ) 个 X ≤ r , X l = r > r 0 , ( t 0 − 1 ) 个 X ≤ r 0 ) = P ( ( t − 1 ) 个 X ≤ r , X l = r > r 0 )
于是由 (1) 的结论,当 r ≤ r 0 r \leq r_0 r ≤ r 0 时为 0 0 0 ,当 r > r 0 r>r_0 r > r 0 时 = P ( X l = r ) ⋅ [ P ( X n ≤ r 0 ) ] t − 1 = α r ( ∑ m = 0 r α m ) t − 1 =P\left(X_l=r\right)\cdot\big[P\left(X_n\leq r_0\right)\big]^{t-1}=\alpha_r\left(\sum\limits_{m=0}^{r}\alpha_m\right)^{t-1}{} = P ( X l = r ) ⋅ [ P ( X n ≤ r 0 ) ] t − 1 = α r ( m = 0 ∑ r α m ) t − 1
因此 { ( R k , T k ) } \left\{(R_k,\,T_k)\right\} { ( R k , T k ) } 是 Markov 链,转移概率
P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 , T k = t 0 ) = { 0 , r ≤ r 0 α r ( ∑ m = 0 r α m ) t − 1 , r > r 0 P\left(R_{k+1}=r,\,T_{k+1}=t\mid R_k=r_0,\,T_k=t_0\right)=\begin{cases}0&,\,r\leq r_0\\\alpha_r\left(\sum\limits_{m=0}^{r}\alpha_m\right)^{t-1}&,\,r>r_0\end{cases} P ( R k + 1 = r , T k + 1 = t ∣ R k = r 0 , T k = t 0 ) = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 0 α r ( m = 0 ∑ r α m ) t − 1 , r ≤ r 0 , r > r 0
(3) 由题意,S k S_k S k 即第 k k k 个记录出现的时刻。欲求 P ( S k + 1 = s ∣ S k = s 0 ) P(S_{k+1}=s\mid S_k=s_0) P ( S k + 1 = s ∣ S k = s 0 ) ,这个事相当于:
X 1 , ⋯ , X s − 1 X_1,\cdots,X_{s-1} X 1 , ⋯ , X s − 1 的最大值出现在前 s 0 s_0 s 0 个中,即 max ( X 1 , … , X s − 1 ) = max ( X 1 , … , X s 0 ) \max(X_1,\dots,X_{s-1})=\max(X_1,\dots,X_{s_0}) max ( X 1 , … , X s − 1 ) = max ( X 1 , … , X s 0 ) . 参考习题 1.6 可得,当变量为连续型时,右侧 max 括号内每一个数成为左侧最大值的可能性相同,均为 1 s − 1 \dfrac{1}{s-1} s − 1 1 ,因此这部分的概率为 s 0 s − 1 \dfrac{s_0}{s-1} s − 1 s 0 ;X s X_s X s 是新的记录值,即 X s = max ( X 1 , … , X s ) X_s=\max(X_1,\dots,X_s) X s = max ( X 1 , … , X s ) ,这里的概率为 1 s \dfrac1s s 1 .以上两事件独立,故 P ( S k + 1 = s ∣ S k = s 0 ) = s 0 s − 1 1 s ( s > s 0 ) P(S_{k+1}=s\mid S_k=s_0)=\dfrac{s_0}{s-1}\dfrac1s\ (s>s_0) P ( S k + 1 = s ∣ S k = s 0 ) = s − 1 s 0 s 1 ( s > s 0 ) .
于是 { S n } \left\{S_n\right\} { S n } 是 Markov 链,转移概率
P ( S k + 1 = s ∣ S k = s 0 ) = { 0 , s ≤ s 0 s 0 s ( s − 1 ) , s > s 0 P(S_{k+1}=s\mid S_k=s_0)=\begin{cases}0&,s\leq s_0 \\ \dfrac{s_0}{s(s-1)}&,s>s_0 \end{cases} P ( S k + 1 = s ∣ S k = s 0 ) = ⎩ ⎪ ⎨ ⎪ ⎧ 0 s ( s − 1 ) s 0 , s ≤ s 0 , s > s 0
# 4.18工作按速率 λ \lambda λ 的 Poisson 过程来到一个加工中心。加工中心只有 N N N 个等待空间,因此若来到的工作发现有 N N N 个工作在等待就不再进来。每天至多有一个工作得到加工,而加工此工作必须在每天的开始。于是若在每天开始时有任何工作等待加工,则其中之一就在这天被加工,否则这天就没有工作被加工。以 X n X_n X n 记第 n n n 天的开始时处在该加工中心的工作个数(不含当天开始时被加工的工作).
求 Markov 链 { X n } \left\{X_n\right\} { X n } 的转移概率. 判断该链是否遍历. 写出平稳概率的方程. 解:
(1) X n X_n X n 可能的取值只能为 [ 0 , N ] \left[0,N\right] [ 0 , N ] 中的整数。计算 P ( X n + 1 = x ∣ X n = x 0 ) P(X_{n+1}=x\mid X_n=x_0) P ( X n + 1 = x ∣ X n = x 0 ) 时,假设两次统计之间来了 k k k 个工作(概率为 e − λ λ k λ ! \dfrac{ {\rm e}^{-\lambda}\lambda^k}{\lambda!} λ ! e − λ λ k ),按 x 0 x_0 x 0 分两类讨论: ① x 0 = 0 x_0=0 x 0 = 0 时,当 0 ≤ k < N 0\leq k<N 0 ≤ k < N 时 X n + 1 X_{n+1} X n + 1 的取值 x = k x=k x = k ,当 k ≥ N k\geq N k ≥ N 时 x = N x=N x = N ; ② 0 < x 0 ≤ N 0< x_0\leq N 0 < x 0 ≤ N 时,先从队列中扣除一个工作进行处理,当 0 ≤ k < N − x 0 0\leq k < N-x_0 0 ≤ k < N − x 0 时 X n + 1 X_{n+1} X n + 1 的取值 x = x 0 + k − 1 x=x_0+k-1 x = x 0 + k − 1 ,当 k ≥ N − x 0 + 1 k\geq N-x_0+1 k ≥ N − x 0 + 1 时 x = N x=N x = N
将参数由 k k k 代换为 x x x 即得转移概率表达式
P ( X n + 1 = x ∣ X n = x 0 ) = { e − λ λ x x ! x 0 = 0 , 0 ≤ x < N ∑ k = N ∞ e − λ λ k k ! x 0 = 0 , x = N e − λ λ x − x 0 + 1 ( x − x 0 + 1 ) ! 0 < x 0 ≤ N , x 0 − 1 ≤ x < N ∑ k = N − x 0 + 1 ∞ e − λ λ k k ! 0 < x 0 ≤ N , x = N P(X_{n+1}=x\mid X_n=x_0)= \begin{cases} {\dfrac{ {\rm e}^{-\lambda}\lambda^x}{x!} } & x_0=0\,,\quad\quad\ 0\leq x<N \\ \sum\limits_{k=N}^{\infty} {\dfrac{ {\rm e}^{-\lambda}\lambda^k}{k!} } & x_0=0\,,\quad\quad\ x=N \\ {\dfrac{ {\rm e}^{-\lambda}\lambda^{x-x_0+1} }{(x-x_0+1)!} } & 0< x_0\leq N,\, x_0-1\leq x<N \\ \sum\limits_{k=N-x_0+1}^{\infty} \dfrac{ {\rm e}^{-\lambda}\lambda^k}{k!} & 0< x_0\leq N,\, x=N \end{cases} P ( X n + 1 = x ∣ X n = x 0 ) = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ x ! e − λ λ x k = N ∑ ∞ k ! e − λ λ k ( x − x 0 + 1 ) ! e − λ λ x − x 0 + 1 k = N − x 0 + 1 ∑ ∞ k ! e − λ λ k x 0 = 0 , 0 ≤ x < N x 0 = 0 , x = N 0 < x 0 ≤ N , x 0 − 1 ≤ x < N 0 < x 0 ≤ N , x = N
(2) 先证明该链不可约且正常返:
若 X n = 0 X_n=0 X n = 0 ,则新到达 k k k 个工作后,X n + 1 = min ( k , N ) X_{n+1}=\min(k,N) X n + 1 = min ( k , N ) ,由于 Poisson 分布对任意 k ∈ N k\in \mathbb{N} k ∈ N 都有正概率,故对任意 0 ≤ x ≤ N 0\leq x\leq N 0 ≤ x ≤ N ,P ( X n + 1 = x ∣ X n = 0 ) > 0 P(X_{n+1}=x\mid X_n=0)>0 P ( X n + 1 = x ∣ X n = 0 ) > 0 ,即状态 0 0 0 可以到达所有状态。另一方面,对任意 x 0 > 0 x_0>0 x 0 > 0 ,每天加工一个工作,新到达 k k k 个工作后,状态转移为X n + 1 = min ( x 0 − 1 + k , N ) X_{n+1}=\min(x_0-1+k,N) X n + 1 = min ( x 0 − 1 + k , N ) ,特别地若连续有限天 k = 0 k=0 k = 0 ,工作数会递减到达状态 0 0 0 . 因此该链不可约,且状态间是正常返的.
再证明该链非周期:
P ( X n + 1 = 0 ∣ X n = 0 ) = e − λ > 0 P(X_{n+1}=0\mid X_n=0)={\rm e}^{-\lambda}>0 P ( X n + 1 = 0 ∣ X n = 0 ) = e − λ > 0 ,即状态 0 0 0 可以在一步内返回自身,因此周期为 1. 由互通状态周期一致,该链周期为 1,故该链非周期.
因此该链是遍历的.
(3) 平稳概率方程 { π j = ∑ i π i P i j ∑ i = 0 N π i = 1 \left\{\begin{aligned}\pi_j= \sum\limits_i&\pi_iP_{ij}\\\sum\limits_{i=0}^N \pi_i=&\,1\end{aligned}\right. ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ π j = i ∑ i = 0 ∑ N π i = π i P i j 1 . 由 (1) 中的分类,当 j < N j<N j < N 时
π j = ∑ i = 0 N π i P i j = π 0 ⋅ e − λ λ j j ! + ∑ i = 1 N π i P i j = π 0 ⋅ e − λ λ j j ! + ∑ i = 1 j + 1 π i P i j = π 0 ⋅ e − λ λ j j ! + ∑ i = 1 j + 1 π i ⋅ e − λ λ j − i + 1 ( j − i + 1 ) ! \begin{aligned} \pi_j=\sum\limits_{i=0}^N \pi_i P_{ij}&= \pi_0 \cdot \frac{ {\rm e}^{-\lambda}\lambda^j}{j!}+\sum\limits_{i=1}^N \pi_i P_{ij} \\ &= \pi_0\cdot{ \frac{ {\rm e}^{-\lambda}\lambda^j}{j!}+\sum\limits_{i=1}^{j+1} \pi_i P_{ij} }\\ & =\pi_0 \cdot\frac{ {\rm e}^{-\lambda}\lambda^j}{j!}+\sum\limits_{i=1}^{j+1}\pi_i\cdot\frac{ {\rm e}^{-\lambda}\lambda^{j-i+1} }{(j-i+1)!} \end{aligned} π j = i = 0 ∑ N π i P i j = π 0 ⋅ j ! e − λ λ j + i = 1 ∑ N π i P i j = π 0 ⋅ j ! e − λ λ j + i = 1 ∑ j + 1 π i P i j = π 0 ⋅ j ! e − λ λ j + i = 1 ∑ j + 1 π i ⋅ ( j − i + 1 ) ! e − λ λ j − i + 1
当 j = N j=N j = N 时,π N = ∑ i = 0 N π i P i N = π 0 ∑ i = N ∞ e − λ λ i i ! + ∑ i = 1 N π i ( ∑ i = N − i + 1 ∞ e − λ λ i i ! ) \pi_N=\sum\limits_{i=0}^N \pi_i P_{i N}=\pi_0 \sum\limits_{i=N}^{\infty}\dfrac{ {\rm e}^{-\lambda}\lambda^i}{i!}+\sum\limits_{i=1}^N \pi_i\left(\sum\limits_{i=N-i+1}^{\infty} \dfrac{ {\rm e}^{-\lambda} \lambda^i}{i!}\right) π N = i = 0 ∑ N π i P i N = π 0 i = N ∑ ∞ i ! e − λ λ i + i = 1 ∑ N π i ( i = N − i + 1 ∑ ∞ i ! e − λ λ i )
# 4.23在赌徒破产问题中,证明
P ( 赢得下一次赌局 ∣ 当前资产为 i , 且迟早到 N ) = { p [ 1 − ( q / p ) i + 1 ] / [ 1 − ( q / p ) i ] , p ≠ 1 / 2 ( i + 1 ) / 2 i , p = 1 / 2 \begin{aligned}&\quad\ \ P(赢得下一次赌局\mid 当前资产为\ i\,, 且迟早到\ N)\\\\&=\begin{cases}p[1-(q/p)^{i+1}]/[1-(q/p)^{i}],\quad p\neq1/2\\\\(i+1)/2i,\quad p=1/2\end{cases}\end{aligned} P ( 赢 得 下 一 次 赌 局 ∣ 当 前 资 产 为 i , 且 迟 早 到 N ) = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ p [ 1 − ( q / p ) i + 1 ] / [ 1 − ( q / p ) i ] , p = 1 / 2 ( i + 1 ) / 2 i , p = 1 / 2
解:
由例题 4.4A,从本金 i i i 出发最终赢到 N N N 的概率 f i = { 1 − ( q / p ) i 1 − ( q / p ) N , p ≠ 1 2 i N , p = 1 2 f_i=\begin{cases}\dfrac{1-(q/p)^i}{1-(q/p)^N}&,p\neq\dfrac12\\\dfrac iN&,p=\dfrac12\end{cases}{} f i = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 1 − ( q / p ) N 1 − ( q / p ) i N i , p = 2 1 , p = 2 1
于是
P ( 下一局赢 ∣ 从 i 开始赢到 N ) = P ( 从 i 开始赢到 N ∣ 下一局赢 ) ⋅ P ( 下一局赢 ) P ( 从 i 开始赢到 N ) = P ( 从 i + 1 开始赢到 N ) ⋅ P ( 下一局赢 ) P ( 从 i 开始赢到 N ) = p ⋅ f i + 1 f i \begin{aligned} P(\text{下一局赢} \mid 从\ i\ 开始赢到\ N)&= \dfrac{P(从\ i\ 开始赢到\ N\mid\text{下一局赢})\cdot P(下一局赢)}{P(从\ i\ 开始赢到\ N)}\\ &= \dfrac{P(从\ i+1\ 开始赢到\ N)\cdot P(下一局赢)}{P(从\ i\ 开始赢到\ N)}\\ &= \dfrac{p\cdot f_{i+1} }{f_i}\\ \end{aligned} P ( 下一局赢 ∣ 从 i 开 始 赢 到 N ) = P ( 从 i 开 始 赢 到 N ) P ( 从 i 开 始 赢 到 N ∣ 下一局赢 ) ⋅ P ( 下 一 局 赢 ) = P ( 从 i 开 始 赢 到 N ) P ( 从 i + 1 开 始 赢 到 N ) ⋅ P ( 下 一 局 赢 ) = f i p ⋅ f i + 1
因此当 p ≠ 1 2 p\neq\dfrac12 p = 2 1 时,p ⋅ f i + 1 f i = p ( 1 − ( q / p ) i + 1 ) 1 − ( q / p ) i \dfrac{p\cdot f_{i+1} }{f_i}= \dfrac{p{(1-(q/p)^{i+1})} }{ {1-(q/p)^i} } f i p ⋅ f i + 1 = 1 − ( q / p ) i p ( 1 − ( q / p ) i + 1 ) ;当 p = 1 2 p=\dfrac12 p = 2 1 时,p ⋅ f i + 1 f i = 1 2 i + 1 i = i + 1 2 i \dfrac{p\cdot f_{i+1} }{f_i}= \dfrac12\dfrac{i+1}{i}=\dfrac{i+1}{2i}{} f i p ⋅ f i + 1 = 2 1 i i + 1 = 2 i i + 1